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RESUMO

O mercado de agdes é considerado bastante volatil, porém € uma opgéo de
investimento procurada tendo em vista que pode gerar alto retorno. A previséo
de tendéncias nesse mercado n&o é nada simples, pois além de diversos fatores
econdmicos e politicos € um mercado bastante suscetivel a fatores psicolégicos
também. Os tradicionais métodos hoje utilizados, que sdo as analises técnicas e
fundamentalistas ndo se mostram plenamente capazes de identificar relacdes
nao lineares entre as variaveis que podem influenciar o pre¢o de uma agao, bem
como seus movimentos de alta e baixa, sendo necessario o uso de técnicas mais
especificas como as Redes Neurais Artificiais (RNAs) para mapear esses

movimentos.

Uma RNA é uma ferramenta que simula habilidades do aprendizado do cérebro
humano, possuindo a capacidade de modelar fungdes nao lineares em
ambientes complexos e que possuem informagdo incompletas ou que

apresentam ruidos.

Neste trabalho, o objetivo é demonstrar através da utilizagdo das RNAs, o
desenvolvimento de modelos capazes de realizar a previsdo de tendéncias,
sejam elas de alta ou de baixa no mercado de agbes observada sua relagédo com
variaveis macroeconémicas como a taxa de cambio, inflagdo e a taxa de juros

de longo e curto prazo.
Os modelos estudados apresentaram um elevado grau de acerto na previséo de

tendéncias, sendo possivel concluir que esta € uma ferramenta poderosa no

auxilio do gerenciamento de uma carteira de investimentos.

Palavras chave: Redes Neuraisb RNAs‘ Previsao



ABSTRACT

The stock market is considered quite volatile but is a very searched option of
investment that can provide high return. The prediction of trends in this market is
not at all simple, because in addition to several economic and political factors is
a very susceptible Market, psychological factors affects as well. The traditional
methods used, which are the technical and fundamentalist analyzes, do not show
themselves fully capable of identifying non-linear relations between the variables
that can compose the price of an action, as well as their movements of high and
low, being necessary the use of techniques more specific such as Artificial Neural

Networks to map these movements.

RNA is a tool that simulates learning abilities of the human brain, having the ability
to model non-linear functions in complex environments that have incomplete or

noisy information.

In this work, the objective is to demonstrate through the use of the RNA, the
development of models capable of forecasting trends, whether high or low in the
stock market, observed its relation with macroeconomic variables such as the

exchange rate, inflation and the long and short-term interest rate.
The models studied presented a high degree of accuracy in the forecast of trends,

and it is possible to conclude that this is a powerful tool to help the management

of an investment portfolio.

Keywords: Artificial Neural Network, RNAs, Prevision
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1. INTRODUCAO

1.1 Motivagao

O mercado financeiro ¢ influenciado por diversos fatores, tendo de se levar em
consideracdo condigbes econdmicas e politicas, além fatores psicolégicos e
sociais que sdo altamente correlacionados entre si de uma maneira bastante
complexa. Existem diversos estudos na area de finangas e economia que tem
sido realizados afim de entender melhor a relagédo entre os precos das agbes e
as variaveis macroecondmicas, tendo em vista que os pregos dos ativos estao

diretamente relacionados aos fundamentos macroecondmicos.

E possivel observar que os precos das agbes apresentam um padréo de
oscilacéo de alternancia entre seus movimentos de alta e de baixa ao longo do
tempo. Durante a década de 1960 foi desenvolvida a teoria da Hipotese do
Mercado Eficiente que pressupde que os pregos exercidos no mercado séo
definidos por toda informagao disponivel, onde nao ha a possibilidade de ganhos
extraordinarios mesmo que uma outra corrente acredite que seja sim possivel
extrair altos retornos considerando essas mesmas informagdes que séo publicas
a todo o mercado. Nos dias atuais, o desenvolvimento da computagéo e outras
técnicas avancadas tém ajudado em uma melhor compreenséo de sistemas
denominados complexos e néo lineares, tendo em vista que os métodos de
andlises hoje existentes e os modelos econométricos tradicionais nao garantem
uma elevada taxa de retorno por um periodo consistente de tempo (FAMA,
2008). Existe um grau bastante alto de incerteza nas relagbes que se
estabelecem entre as variaveis de interesse, onde o padrao de flutuagdo de uma
delas pode acarretar no desemprenho das demais (BRESSAN et al., 2005 e KIM,
2003), onde os métodos n&o lineares tradicionais ndo conseguem acompanhar
essa volatilidade existente no mercado de agdes (CRUZ, 2002). Logo, o estudo
de modelos que consigam captar melhor as relagdes néo lineares, surge como
uma grande alternativa e oportunidade para a melhor compreensédo do

comportamento deste mercado tao volatil.



A teoria das Redes Neurais Artificiais (RNAs) surgiu a fim de explorar sistemas
complexos, e hoje em dia é aplicada em diferentes areas como na previséao de
clima, na transmiss&o de energia elétrica, na area da saude, etc. Os modelos
baseados nas RNAs possuem a capacidade de identificar e mapear as relagdes
nao lineares entre variaveis, de lidar com dados muitas vezes incompletos ou
com ruidos, além de ndo requererem nenhuma suposi¢ao inicial sobre os dados
(VELLIDO et al., 1998).

Em economia, Leung et al. (2000) concluiram que as RNAs apresentam melhor
desempenho na previsdo dos indices de agdes comparado com diversos
métodos estatisticos. Cruz (2002) realizou uma comparagao entre o modelo auto
regressivo integrado de médias moéveis (ARIMA) e as RNAs na previsao da taxa
de cambio entre o délar americano e o australiano, sendo que o resultado obtido
através das RNAs foi 4 vezes melhor do que o apresentado pelo modelo ARIMA.
Dentro desse cenario, é possivel verificar significativo interesse do uso de
modelos de inteligéncia artificial, como as RNAs, para auxiliar na tomada de

decisdes no mercado financeiro.

1.2 Mercado Acionario e os Tipos de Ac¢des

A bolsa de valores € um mercado organizado onde sdo negociados valores
mobilirios, tais como agdes e opgdes sobre agdes. O mercado de agbes possui
a funcéo de negociar esses titulos, que sdo caracterizados por serem de renda
variavel e emitidos pelas sociedades, representando a menor parte da fragéo do

capital de uma empresa.

As acbes podem ser classificadas como ordinérias ou preferenciais, sendo
respectivamente aquelas que garantem ao acionista o direito de voto em
assembleias gerais e proporcionam a participagdo nos dividendos (resultados)
ou entdo, aquelas que garantem ao acionista uma prioridade no reembolso do
capital no caso da dissolugéo da sociedade e no recebimento dos dividendos e

que também podem garantir o direito ao voto.



As acdes sdo conhecidas por serem de renda variavel, podendo ser convertidas
em dinheiro a qualquer momento, possuem em sua esséncia uma volatilidade
que desafia cotidianamente aqueles que buscam entender o comportamento de

seus pregos.

1.2.1 Analises Técnica e Fundamental

1.2.1.1 Analise Técnica

A primeira formulagédo de uma teoria sobre o estudo do movimento dos pregos
das acdes surgiu em 1882 com Charles Henry Dow, juntamente com Edward
Davis Jones e Charles Bergstresser, que fundaram os conhecidos Wall Street
Journal e a Dow Jones & Company, sendo ainda hoje, duas gigantes no mercado

financeiro.

Na anélise técnica se constitui a ideia de que os movimentos sejam eles de
tendéncia para baixa ou alta do preco de uma agdo podem ser determinados por
padroes que sao recorrentes, sendo possivel prever estes movimentos. A
analise técnica se utiliza de graficos que mapeiam transagdes como pregos de
abertura, fechamento, valor maximo ou minimo e volume negociado para
identificar os padrées que possam auxiliar na deciséo de compra ou venda de

um determinado tipo de papel.

1.2.1.2 Teoria de Dow

Dow defendia que a criagio de indices poderia ajudar os investidores a identificar
tendéncias no mercado financeiro, por isso propds a criagdo dos indices Dow
Jones Transportation Average, obtido a partir dos precos de 20 grandes
empresas ferroviarias, e o indice Dow Jones Industrial Average, calculado com

base nos pregos de 30 grandes empresas estadunidenses.

Os estudos de Charles Dow foram interpretados por 6 principios, sendo eles:



. Principio 1: os pregos dos indices sdo formados por ideias e conceitos
de diversos investidores, sendo que alguns se utilizam das melhores
informacdes disponiveis no mercado enquanto outros nao, esse pressuposto
traz a ideia de que as variagdes diarias dos pregos ja incluem em seu preco,
possiveis eventos que irdo acontecer e que s&o desconhecidos pela maioria dos

investidores;

o Principio 2: pressupde que existem 3 tipos de tendéncias de movimento,
a primaria, secundaria e terciaria. A primeira se caracteriza por acreditar que o
mercado em geral seguira tendéncias mais importantes e latentes no momento,
chamadas de primarias, que duram em geral um ano ou mais, provocando
grandes valorizagdes e desvalorizagbes de prego. Ao longo da tendéncia
primaria ocorre a tendéncia secundaria, durando de 2 semanas a 4 meses, € a

tendéncia terciaria durando de seis a trés semanas,

. Principio 3: existem 3 fases de tendéncias, sendo a primeira de alta, que
é estimulada por investidores qualificados e que possuem a melhor percepcao
do momento. Como nem todos possuem o mesmo nivel de conhecimento e
informagao, isso faz com que os que possuem melhor percepgao adquiram o0s
papeis mais baratos. Na segunda fase, as compras aumentam acelerando a
tendéncia, e na terceira fase ha grandes altas, reflexo da seguranga dos demais

agentes de mercado ao observar os movimentos da primeira e segunda fase;

. Principio 4: a tendéncia pode ser revertida entre indices de composicdes
distintas;
° Principio 5: para Dow, volume e tendéncia se relacionam de maneira que

z

em uma tendéncia de alta, é esperado que o volume negociado também
aumente com valorizagdo dos ativos, e na baixa esse volume também caia,

levando em consideragao a desvalorizagéo dos ativos;



. Principio 6: a tendéncia continua até que surja um sinal de que houve
reversao no mercado. Para que a tendéncia mude completamente, € preciso que

essa se mostre definitiva.

Apesar da analise técnica ser criticada por ser subjetiva, onde os agentes podem
interpretar de maneiras diferentes os gréaficos e requerer certo tipo de
conhecimento avancgado para sua realizacao, a andlise técnica é a mais utilizada

pelos participantes do mercado.

1.21.3 Analise Fundamental

A analise fundamental procura medir o valor intrinseco de um ativo com a
utilizacdo do estudo das informagdes disponiveis no mercado e da empresa
emitente da acgdo, analisando os ganhos de rentabilidade da mesma, a
credibilidade dela no mercado, a expectativa das taxas de juros, as possiveis
projecdes para o crescimento do setor em que a empresa esta inserida, etc. A
maior vantagem desse tipo de andlise comparada a andlise técnica € que a
analise fundamental apresenta melhor desempenho se comparada no longo
prazo na previséo de estabilidade e crescimento, pois ela preserva a capacidade
de prever tendéncias antes de serem captadas em um gréafico. Porem, ao se
tratar de uma analise subjetiva, existe um grande custo para identificar fatores
de influenciardo determinado ativo ou prever o tamanho da influéncia por ela

provocada.

O principal viés de utilizagao de qualquer modalidade de analise no mercado
financeiro torna-os incertos por natureza devido a serem movidos
constantemente por inimeros participantes que se utilizam de variadas
estratégias e taticas em tempos distintos. As andlises técnicas e
fundamentalistas apesar de serem bastante utilizadas, ainda séo também muito
subjetivas, onde na pratica, muitos autores da literatura afirmam que deixam a
desejar comparadas aos modelos de RNAs na previsdo de tendéncias no

mercado financeiro em geral.



1.3 Hipotese do Mercado Eficiente

A Hipotese do Mercado Eficiente (HME) atesta que, em qualquer periodo em que
¢ apurado o preco de uma agéo, ele captura toda informacéo disponivel em
relacdo a agdo. Como essa informagdo € consumida por todo o mercado, as
variagbes podem ocorrer de maneira aleatéria de acordo com a incidéncia
dessas informagdes e a maneira com que se faz o uso constante dessas pelos
agentes de mercado. Este conceito foi se tornando cada vez mais aceito entre o

final dos anos 60 e o inicio dos 70, sob a rubrica Theory of Random Walk.

Segundo Fama (2008), que realizou um dos estudos mais importantes nesse
sentido & época, intitulado “Efficient Capital Markets: A Review of theory and

Empirical Work®, existem trés niveis de eficiéncia no mercado:

o Forma Fraca de Eficiéncia: os precos das acgdes ja refletem toda
informagao contida no histérico dos pregos e volumes negociados, onde o prego
das agbes ja teria sido ajustado por analistas que tentam prever seu

comportamento;

o Forma Semiforte de Eficiéncia: os precos das acgdes ja refletem toda
informagao disponivel aos investidores, ndo sendo possivel superar o mercado,
tendo em vista que o prego da agéo com base em informagdes publicas ja reflete
seu valor real e outros analistas ja efetuaram a analise e os precos reajustados

com base nessas;

. Forma Forte de Eficiéncia: os precos das agdes ja refletem toda
informacao publica e sigilosa, sendo essas informagdes as que néo s&o sabidas
por todo o mercado, podendo influenciar a precificagdo das agdes. Assim néao é
possivel superar o mercado com base nas outras informagdes, pois outros
analistas que também ja possuiam essas informacdes ja se utilizaram dessas e

os pregos ja foram reajustados.

Para a teoria da HME, o mercado assume agentes racionais, onde os valores

das acgdes s6 se alterariam caso alguma informacéo nova chegasse, porém &



possivel observar na pratica que algumas agdes apresentam volatilidade nos
precos que nao podem ser explicadas por essa teoria. Para Cruz (2002), os
estudos pouco mostram uma correlagéo entre a chegada de novas informagdes
no mercado e a variagdo dos pregos, existindo uma volatilidade que nao pode

ser apenas explicada por informagdes disponiveis no mercado.

A teoria do mercado eficiente pressupde que os pregos das agbes nao se
comportam de maneira previsivel e sim aleatéria, onde o melhor momento para
ser estudado, € o momento atual. A economia comportamental tem tentado
mostrar que em observagbes comportamentais do mercado, os pregos nao
variam de forma tao aleatéria quando a teoria do mercado eficiente defende, os
precos sofrem muito com a influéncia da subjetividade e do comportamento

humano.

A teoria da HME é importante, pois contradiz todas as outras formas de analise,
ou seja, é impossivel construir modelos que obtenham retornos extraordinarios
no mercado. Existe uma contradicdo na literatura sobre a validade da HME
(ZHANG et al., 1998), grande parte dos trabalhos a rejeita tendo em vista que a
HME pressupde que toda informagao esta disponivel a todos os participantes da
mesma forma, sem custos. Outro ponto criticado € de que os pregos n&o variam
s6 em funcéo das informagdes disponiveis tendo de se considerar também os
fatores psicoldgicos dos agentes participantes do mercado, além de que os
precos também sdo formados por agentes que possuem informagoes

privilegiadas e melhores técnicas de previséo.

1.4 Modelos Neurais de Previsdo

As RNAs podem funcionar como aproximadores universais entre as informacdes
disponiveis no mercado acionario. Como a maioria dos modelos se apresentam
de forma nao linear e com maior niimero de parametros, as RNAs possuem a
capacidade de modelar de maneira adequada um maior nimero de séries do
que os modelos lineares, resultado disso € a grande integragéo dos modelos de

RNAs com modelos estatisticos.



1.5 O Mercado de Ag¢des no Brasil

Principalmente até o inicio da década de 90, a estrutura do mercado de acdes
no Brasil possuia elevado nivel de intervengdo do governo, considerada uma
estrutura fechada. Segundo Gréppo (2004, p.109), existia um problema grande
de crescente inflacdo e um controle excessivo sobre o fluxo de capital. A partir
de entdo, o Brasil comegou a adotar uma série de medidas de
desregulamentagéo, redugéo do papel do estado e modernizagéao, visando abrir
um caminho para uma economia mais flexivel, objetivando a atracdo de maiores
investimentos externos e, entdo, logo 0 mercado de capitais passou a ter uma

maior importancia em substituicdo ao mercado do crédito.

Em 1994, com o advento do Plano Real, o Brasil conseguiu controlar a inflagao
e atingiu certa estabilidade de precos, transformando-se em um ambiente
bastante favoravel para o amadurecimento da bolsa de valores, sendo que o
Unico agravante retardador desse processo era a incerteza das taxas de juros

que perduraria durante um bom tempo (GROPPO, 2004).

Os recentes juros mais baixos tém ajudado a atrair a atencéo para aplicagdes
em acdes, seja por meio direto ou através de fundos de investimento. Para o ano
de 2018, os investidores ja esperavam seus ativos em patamares de precos mais
elevados ocasionados pelo aumento do PIB (Produto Interno Bruto) e uma
pequena melhora da economia no final de 2017. Analistas atuais defendem que
o periodo de eleicdes pode contribuir para que as proje¢des do indice
IBOVESPA ultrapassem 90 mil pontos, o que seria um fato histérico para a Bolsa
de Valores no Brasil, mas caso o ajuste fiscal fosse interrompido durante 2018,

essa projecao cairia para valores préoximos aos 50 mil pontos.

A previséo é de que o ciclo de queda da taxa de juros esteja se encerrando e de
que estas sejam taxas altas para longo prazo, levando em consideragéo outro
fato importante que é a volatilidade dos ativos em periodos de elei¢cdes, podendo
aumentar e trazer riscos para os investidores tornando o cenario de negociagdes

de agOes cada vez mais interessante de ser estudado comparado ao cenario



macroecondmico, e uma grande oportunidade de entender melhor como as

variaveis macroecondmicas podem influenciar nas decisdes de investimento.

1.6 Objetivos

O objetivo geral desse trabalho € construir um modelo baseado em RNAS,
através de um modelo de rede feedfoward com o uso do algoritmo MBP (multiple
backpropagation) para a previsédo do comportamento do mercado acionario no

Brasil, mais especificamente deseja-se:

. Utilizar RNAs para realizar a previsdo das tendéncias do indice da Bolsa
de Valores de Sao Paulo, tendo como variaveis de entrada das RNAs algumas
variaveis macroecondmicas como a taxa de cambio, a inflagéo e a taxa de juros

de longo e curto prazo;

) Identificar as variaveis que possuem o papel mais significativo para a

realizagéo das previsdes;

. Analisar a “arquitetura” da RNA que melhor se aplica na previséo de

tendéncia de pregos de acdes com base em variaveis macroecondmicas.
1.7 Estrutura da Monografia

O restante desta monografia esta organizado da seguinte forma. No Capitulo 2
é apresentado o referencial teérico sobre RNAs, no Capitulo 3 € abordada a
metodologia empregada nos modelos desenvolvidos neste trabalho seguido
entdo, das estimagdes e resultados no Capitulo 4. O Capitulo 5 apresenta a

concluséo geral da monografia.
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2. REFERENCIAL METODOLOGICO

Uma Rede Neural Atrtificial, ou RNA, é o modelo mais simples de Rede Biologica,
que procura reproduzir algumas das fungdes cerebrais. Apesar das RNAs serem
modelos  simplificados, elas conseguem reproduzir adequadamente
determinados processos comportamentais do cérebro humano, como o

aprendizado de tarefas simples e o reconhecimento de padrées.

A célula basica do cérebro humano possui cerca de 10 bilhdes de neurdnios,
onde cada um deles estda conectado a milhares de outros que processam
informagdes continuamente. Sdo trés componentes basicos que compdem o

neurdnio, conhecidos como soma, dendritos e axénio.

-

Axdnio ) /" Dendritos

Figura 1 - Neurénio

Os dendritos sdo responsaveis por receber impulsos nervosos de outros
neurdnios através de um processo conhecido como informagdo. Essa
informacdo é transportada até o corpo da célula, que é responsavel por
processa-la gerando novas frequéncias e novos impulsos. Esses impulsos s&o
transmitidos através do axdnio para os dendritos dos préximos neurdnios que
fazem parte da cadeia de informacéo através de um processo conhecido como
sinapse. S&o as sinapses que controlam as transmissdes entre os impulsos, ou
seja, entre o fluxo de informagdes no cérebro, e s&o através delas que séo
estabelecidas as redes neurais biolégicas, estabelecendo as fungdes em que o
cérebro é responsavel, como o aprendizado, as emoc¢bes e o pensamento.
Destaca-se que cada neurénio estd conectado a cerca de 10° a 10 outros

neuronios.
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O primeiro modelo de neurdnio artificial, proposto por McCulloch e Pitts em 1943,
possuia como entradas as variaveis X, Xz.. X, estando associadas aos
dendritos. Para que fosse possivel a simulagdo do comportamento de um
neurdnio, as sinapses tinham pesos associados a elas, sendo esses pesos
representados por variaveis W;, W .., Wa, que podiam assumir valores positivos
ou negativos, de modo a representar a amplificacdo ou a atenuagéo dos sinais
cerebrais. Neste modelo, 0 neurdnio possuia apenas uma saida que podia ser
excitado quando a soma dos impulsos (3 Xi-W;) ultrapassava um limiar de
excitagao (6), sendo um mecanismo simples que procurava realizar o somatdrio

e decidir, com base neste, se 0 neurdnio deveria ser ou hdo excitado.

Uma deficiéncia observada neste modelo por Minsky (1969) € de que a rede
possuia apenas uma camada e os pesos eram fixos, porém a partir deste
pressuposto, varios outros modelos foram surgindo tendo como principal
modificacdo o ponderamento de diferentes fungdes de ativagdo, produzindo

qualquer saida e ndo apenas uma saida binaria (possivel excitacdo ou n&o).

Xy

Figura 2 — Modelo McCulloch e Pitts

Frank Rosenbatt em 1958 propds o modelo nomeado perceptron, em que as
RNAs possuem sinapses que se ajustam e podem ser treinadas afim de
representar padrées e, em 1986, Hopfield publicou seu estudo sobre o algoritmo
de treinamento chamado de backpropagation — BP (retro-propaga¢ao).

Cada “arquitetura” de RNA pode se adaptar melhor dependendo do determinado
tipo de problema que esta sendo analisado, sendo que os parametros que devem
ser levados em consideragao para a definicdo da RNA sdo: a fungao de ativagao
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dos neurénios, o nimero de camadas da rede, os numeros de neurénios em
cada camada e o tipo de conexao entre os neurdnios da rede. A selegéo destes
parametros depende do tipo de problema que esta sendo abordado (ZHANG et
al., 1998).

2.1 As etapas de implementacido de uma RNA

Apos ter sido definido o problema em que a RNA sera aplicada e as variaveis
que serdo utilizadas, sdo basicamente quatro etapas que constituem a

implementagéo de uma RNA:

e Coleta e Separacio dos Dados: essa etapa consiste na separagao
dos dados e sua segregagéo em dois grupos. O primeiro grupo para
o treinamento da rede pretendida e o outro na resolugéo de problemas
que se aproximam do desejado, observado o comportamento desses

dois grupos;

e Selecdo de Parametros: sdo determinados o nimero de neurdnios
da camada, os tipos de conexdes entre estes neurdnios, o tipo de
funcao de ativagéo e as variaveis de treinamento de rede. Na maior
parte dos problemas, esses parametros devem ser modificados ate

que se obtenha o resultado esperado;

e Treinamento: é nesta fase que os pesos de uma RNA se modificam,

e se ajustam ao ambiente em que est&o inseridas;

e Teste e Validacdao: o conjunto que foi separado previamente &
submetido @ RNA, e entdo é validado. Caso a RNA né&o atinja o

resultado esperado, deve-se retornar as etapas iniciais.

Em relagdo aos dados de entrada para a RNA, na literatura ndo existem muitas
discussdes sobre a necessidade de tratamento desses dados ou de qual tipo de

tratamento utilizar. Shanker et al. (1996) concluiu que o pré-processamento dos
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dados escolhidos é benéfico em termos de classificagdo e erro médio quadratico,
porém a utilizagcdo do tratamento pode levar a um retardo no tempo de

treinamento.

Existem varias maneiras de realizar as transformacdes dos dados para as RNAs

na literatura, as mais utilizadas sao (ZHANG. et al., 1998).

. Transformacgéo Linear para [0,1]: x,, = % (47)
. Transformacao linear para [a,b]: x,, = % (4.8)
o Normalizacao estatistica: x,, = (—xf’—;—xl (4.9)
. Normalizagao simples: x,, = x::u (4.10)

Nas expressdes acima, x, € o dado normalizado, x, € o dado original,
Xmin» Xmax,X € S $80 0 minimo, 0 maximo, a média e o desvio padrédo de um

conjunto de dados, respectivamente.

E importante observar, que apdés o treinamento realizado com dados
normalizados, em geral € necessario voltar os resultados as escalas originais

para que se obtenham saidas coerentes (ZHANG et al., 1998).

2.2 Tipos de Func¢ao de Ativagao

A fung¢do de ativacdo ou funcdo de transferéncia define a relagdo entre os
neurdnios de entrada e saida de uma rede. Em geral, a funcdo de ativacéo
introduz certo grau de nao-linearidade importante para o desempenho de uma
RNA. A fungao mais utilizada é a sigmoidal podendo se observar bons resultados
também com a funcéo hiperbélica como fungdo de ativagdo (SHARDA et al,,
1994). A maioria dos autores se utiliza de fungdo de transferéncia em todas as
camadas para melhores resultados (SHARDA, 1994 e ZHANG et al. 1998).
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Existem diversos tipos de funcéo de ativagdo para os neurdnios de uma RNA,

sendo eles:

2.21 Funcao Degrau

_flsex=0
A {0 sex <0 (21)
S
A+l
0 > X
-1
Figura 3

2.2.2 Funcgao Linear

fX)=x, Vx 2.2)

................

2.2.3 Funcgéao Sigmoidal

A funcéo sigmoidal é o tipo de fungéo de ativagdo mais utilizado. Essa fungao

assume valores entre 0 e 1, sendo dada por:



15

1
1+exp(—x)

f(x)= (2.3)

Six)

A+l

Figura 5

2.2.3.1 Funcao Sigmoidal Linear

Uma variagdo da fungéo sigmoidal é a fungédo sigmoidal linear:

x, se0<x<1
0, cc

fe ={ (2.4)

Figura 6

2.2.4 Funcao Tangente Hiperbdlica

Também bastante utilizada, a fung¢édo tangente hiperbdlica assume valores entre
-1e1:
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f)=—2—-1 (2.5)

1+exp(—2x) -

flx

‘»,{,,1

Figura 7

2.24.1 Funcao Tangente Hiperbdlica Linear

Uma variacdo da fungdo tangente hiperbdlica, a fungéo tangente hiperbdlica

linear é dada por:

x,se—1<x<1

fCo = { 0,c.c. (2.6)

Figura 8

Nos problemas de previsdo, € comum que seja aplicada uma normalizagao dos
dados de entrada da RNA, de modo que todas as variaveis fiquem dentro de um
mesmo intervalo. Esse intervalo depende em geral da fungéo de transferéncia
da camada de saida. Usualmente é utilizado o intervalo [0,1] para as fun¢des
sigmoidais e [-1,1] para a fungao tangente hiperbdlica (ZHANG et al. 1998 e KIM,
2000).
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2.3 Tipos de Redes

Dependendo o numero de camadas, as RNAs podem ser classificadas como:

. Redes com uma Gnica camada: onde apenas uma camada de neurénios

faz o processamento de informagao entre um vetor de entrada e um de saida;

. Redes com camadas multiplas: existe mais de uma camada de
neurdnios fazendo o processamento da informagéo entre a entrada e a saida.

Essas camadas adicionais sdo chamadas de camadas escondidas ou ocultas.

Segundo Haykin (2001, p. 34-41), com a adigdo de uma ou mais camadas
ocultas na rede, a RNA pode modelar aspectos mais complexos do problema a

qual esta submetida.

O numero de neurdnios da camada de entrada é correspondente ao nimero de
variaveis que serdo utilizadas como vetores inicias do problema, sendo que a
grande maioria dos autores fazem essa escolha de maneira empirica. Esta é
uma escolha muito importante e critica no estudo de uma RNA. Deve-se utilizar
de entradas que possuam algum tipo de relagéo implicita com as variaveis de
saida (ZHANG et al., 1998). Além disso, deve-se observar os pesos das
camadas apds o treinamento da rede, sendo que as entradas que apresentarem

maiores pesos possuem maior influéncia no processamento da rede.

O numero de camadas ocultas e o nimero de neurdnios que faréo parte delas
sao fatores decisivos para definir a performance de uma RNA. S&o nos neurdnios
da camada oculta que s&o processados os mapeamentos néo lineares entre as
camadas de entrada e saida e sdo identificados os padrdes entre os dados. A
maioria dos autores utiliza apenas uma camada oculta para previséo (ZHANG et
al., 1998), sendo que Sharda et al. (1994) concluiram que o uso de duas
camadas ocasiona numa arquitetura mais compacta, e com uma maior eficiéncia
de treinamento. Zhang (1994) observou que as redes que se utilizavam de duas

canadas ocultas tinham maiores precisées e Cybenko (1989) concluiu que o uso



18

de duas camadas sao o suficiente para a resolu¢gdo da grande maioria dos

problemas que se utilizam de RNAs, inclusive problemas de previsao.

A maneira mais comum de escolha do nimero de camadas ocultas é de tentativa
e erro. Youngohc (1993) observou que o aumento do numero de camadas
melhora o desempenho da rede, porem até certo ponto. Diversas regras
empiricas foram estabelecidas para determinar o numero de componentes de
cada camada oculta, mas concluiu-se que néo existe um padréo que possa ser
seguido para todos os tipos de problemas que podem ser abordados por RNAs
(ZHANG et al., 1998).

Geralmente o nimero de saida € igual ao nimero de saidas desejadas, sendo
uma decisao simples. Na literatura existem duas maneiras de realizar previsdes
(ZHANG et al., 1998). um periodo a frente, que se utiliza de um unico neurdnio
na camada de saida e realiza previsdo de um unico periodo, e a previsao de
multiplos periodos mais efetuada através do método iterativo — onde para cada
saida existe apenas um componente de saida e esta é utilizada como entrada

do periodo seguinte:

X = f(x1, Xe—1, s Xg—n)) (#1)

Xera = [(Xpr1s Xeo Xem1s oo Xpna1)s (42)

ok = [ Keark—10 Xeak=2s o Xta 1 Xpp Xp—1s o0r Xp—pak=1)r  (43)

7

onde x; € a observagdo no periodo ¢ X, € a previsdo para o periodo ¢ f € a

funcdo estimada pela RNA.
Ou também pode ser estimada através do chamado método direto, no qual o

nuimero de periodos € igual ao numero de componentes da camada de saida, e

cada componente é responsavel por um periodo:

Xer1 = f (X0 Xpmg) veer Xpp), (44
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Xevo = f[o(Xe) Xpm1) oor X)) (4.5)

Xevre = [ (e Xp—1) o Xe4n), (4.6)

onde as f; ..., fi séo fungdes determinadas por cada k-€simo neurénio. Zhang
(1994) observou que os melhores resultados sdo estimados através do metodo
direto, este é o método que sera utilizado nesse trabalho, porém Weigend et al.
(1992) e Hill et al. (1992) defendiam que os melhore resultados eram dados pelo

método iterativo, o mais utilizado na literatura.
2.4 Tipos de Conexao
A seguir sdo apresentados os tipos de conexdes dos neurbénios em RNAs:
o Rede Direta (feedforward): a rede nao possui ciclos, uma saida de um

neurdnio nao é utilizada como entrada de uma camada anterior. Esse tipo de

rede € a mais utilizada juntamente com a aplicagdo do algoritmo

backpropagation.
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Figura 9 - Rede Direta de Unica Camada (Haykin, 2001)
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Figura 10 - Rede Direta de Multiplas Camadas (Haykin, 2001)

. Rede Ciclica (feedback): a saida de algum neurénio é utilizada como
entrada de algum neurdnio pertencente & camada anterior. Essa é a rede mais

indicada para problemas que possuem processamento temporal.
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Figura 11 - Rede Ciclica Simples (Haykin, 2001)



21

2.5 Tipos de Aprendizagem

Para Haykin (2001), o tipo de aprendizado é determinado pela maneira pela qual
ocorrem mudancas nos parametros da RNA. A rede é capaz de criar um padréo
do ambiente em que esta inserida através do processo iterativo entre os ajustes
dos pesos e as conexdes entre os neurdnios quando estimulados. Este
aprendizado permite decidir como os pesos das conexdes serdo alterados e
tambem, se devem ser alterados e considerados na andlise ou descartados para

moldar a topologia da rede.

Para a aplicagao de uma RNA, é necessario tanto coletar dados relacionados ao
problema estudado e quanto segregar esses dados em dois conjuntos distintos.
O primeiro conjunto € utilizado no treinamento da rede e o segundo é usado na
validagao do comportamento dessa rede na resolugao dos problemas préximos
ao resultado definido como pretendido, podendo se concluir se o comportamento
da rede esta de acordo com o desejado. E também bastante comum o uso de
um terceiro grupo de dados, chamado de validagao, utilizado para determinar um

ponto de parada no processo de treinamento (WEIGEND et al., 1992).

Na literatura ndo existe uma conclusao definitiva de como definir o tamanho da
amostra a ser coletada, essa dependera da arquitetura da rede, do algoritmo de
treinamento utilizado, complexidade do problema e da quantidade de ruido
presente nos dados coletados. Em analises estatisticas, quanto maior o nimero
de dados melhor o desempenho do resultado. Zhang et. Al (1998) e Nam e
Schaefer (1998) realizaram testes com diferentes tamanhos de amostra e
concluiram que o desempenho da rede melhora conforme aumenta o tamanho
da amostra. Para Haykin (1994), uma amostra de tamanho muito elevado pode
levar a um overtraining, fazendo com que a rede perca sua capacidade de

generalizagao.

Também né&o existe uma solugdo dada para a decisao entre a escolha de quais
dados faréo parte do treinamento e quais irdo ser utilizados para teste, porém

existe um consenso de que a divisdo entre os dados nio é o mais importante e
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sim o tamanho de cada um deles. E necessario que o conjunto de treinamento
seja suficiente para que a RNA atinja uma avaliagdo satisfatoria (HAYKIN, 1994).

O treinamento é a etapa principal no desenvolvimento de uma RNA, pois é nele
que a rede aprende sobre o ambiente que esta inserida e comega a se adaptar
a ele atraves da variagdo dos pesos para tentar solucionar o problema proposto
(GROPPO, 2004). E preciso atribuir valores iniciais aos pesos da rede de acordo
com os padroes proposto pelo problema, onde a prépria RNA acaba por
modificar os pesos e conexdes por uma regra pré-estabelecida de aprendizado.
Apos esta etapa, as RNAs identificam padrdes e a capacidade de prever o valor
de certas variaveis para situagdes que nao foram apresentadas na etapa inicial

de treinamento.

Os métodos de aprendizado aplicados as RNAs sao classificados como descrito

abaixo:

. Aprendizado Supervisionado: a topologia da rede é moldada afim de
obter um comportamento definido para cada situagdo. S&o calculados erros
entre os valores obtidos pela RNA e os valores esperados para cada situacgao,
sendo que o algoritmo de aprendizado tem como objetivo minimizar os erros
obtidos. Essa operacéo é realizada em cada etapa do treinamento, buscando
uma solugdo, caso ela exista. A soma dos erros quadraticos costuma ser
utilizada como indice de desempenho da rede e como fungao objetivo a ser
minimizada pelo algoritmo de freinamento (BRAGA et al., 2000). A limitagéo do
aprendizado supervisionado € o aprendizado de novas estratégias que nio
estejam no escopo do treinamento inicial.

. Aprendizado Nao-Supervisionado: a rede neste caso nao possui saidas
desejadas a priori, utilizando-se apenas de vetores de entrada, tendo como
objetivo diferenciar classes de padrdes diferentes dentre os dados apresentados
a rede. Isto é possivel apenas quando existe redundancia nos dados de entrada
para que a rede possa identificar possiveis padrées ou caracteristicas no

problema analisado.
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. Aprendizado Hibrido: ¢ uma mistura dos dois tipos de aprendizado
anteriormente mencionados, sendo uma parte dos pesos da RNA definida pelo
aprendizado supervisionado, enquanto a outra é determinada pelo nao-

supervisionado.

O mais importante para medir a performance de uma RNA é a acuracia apés a
etapa de treinamento. Esse grau de acuracia geralmente € medido em termos
do erro entre o valor desejado e o valor obtido na previsdo (ZHANG et al. 1998).

As medidas mais utilizadas séo:

o Desvio absoluto médio (MAD): —Z-%'ﬂ (411)
. Soma dos erros quadraticos (SSE): Y.(e;)? (412)
. Erro médio quadratico (MSE): 2%&2 (4.13)
. A raiz do erro médio quadratico (RMSE): VMSE (4.14)

o Erro percentual absoluto (MAPE): % > =1 (100) (415)

4
Y
Nas definicdes acima, e, € o erro individual de cada previséo, y, & o valor atual

e N é o numero de periodos avaliados. A medida mais usada para acuracia na

literatura € o erro médio quadratico (MSE).
2.6 Indicadores
2.6.1 Média Mével

As médias moveis consistem em médias que sdo extraidas de dados
sequenciais de um determinado intervalo de tempo, ela propde informar o inicio
ou o fim de uma tendéncia de precos. Uma média que apresenta 8 periodos,
mostrara o pregco médio do fechamento desses 8 periodos. No dia subsequente
substitui-se o preco de fechamento do primeiro dia apurado pelo prego de
fechamento do dia subsequente e assim sucessivamente, criando uma chamada

“média moével”.
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2 x PFhoje+(N—I)x MMEontem
jer(N—1) (2.7)

MMEhoje =
N+I

onde, MMFhoje € a média movel exponencial de hoje, PFhoje € o prego de
fechamento de hoje, N é o nimero de dias da média mével exponencial e

MMEontem é a média exponencial de ontem.
2.6.2 Volume

E uma medida que expressa o valor do montante financeiro negociado durante
um pregdo, podendo se referir ao mercado como um todo ou a um ativo

especifico.
2.6.3 Momento

O momento representa a diferenga dos pregos de fechamento de determinado

periodo e a evolugdo de tendéncia desses precos.
O momento de xdias € dado por:
Mx = PFhoje — PF (hoje — x) (2.8)
2.6.4 Tendéncia
Refere-se a direcao dos pregos representados graficamente, podendo assumir
um padrao ascendente, descente ou indefinido. A permanéncia da diregdo em
determinado padrao é denominada tendéncia.
2.7 O Backpropagation
O backpropagation € um modelo nao linear - representado esquematicamente
na Figura 12 - formado por um conjunto de entradas Xn, um conjunto de pesos

correspondentes representado por Wn e possuindo em sua estrutura um agente

somador que adiciona as entradas ja ponderadas pelos pesos junto a uma
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fungao de transferéncia que limita a amplitude da saida do neurénio a um valor
finito. Além disso, Hopfield (1982) denominou de “bias” um fator que tem efeito

de aumentar ou diminuir a agcao da fungao de ativacao.

X bias
H‘;
X3 owy Y
S ,
& E’ <!W-----“'i~ e,
* {,‘ E g (p(‘) "
* v Hk
b1y
- #
Xy

Figura 12 - Modelo N&o Linear de um Neurdnio (Hopfield, 1982)

Onde,
Uk = ¥nj = 1(Wkj. X)) (2.9)
Yk = ¢ (Uk + HK) (2.10)

Sendo:

X1, Xz, ..., Xn'SA0 0S sinais de entrada do neurdnio (k),
Wki, Wk, .., Wka s@0 0s pesos do neurdnio (K);
Uk é o resultado do somador;

Hksendo o bias;

¢(.) a fungéo de ativacao e,

Yk o sinal de saida do neurénio X

2.71 Perceptron

Em 1958, Rosenbalt concluiu uma forma simples de rede neural capaz de
resolver problemas linearmente separaveis, que acabou se tornando pioneira
segundo Haykin (1994). Também era utilizada para resolver problemas de
classificacéo e capaz de convergir para uma superficie de decisao formada por

um outro plano entre essas classes de classificacdo denominada perceptron.
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2.7.2 Perceptron Multicamadas

O Perceptron que foi proposto por Rosenbalt tinha a capacidade de resolver
apenas problemas que eram linearmente separaveis e, entdo, em 1986,
Rumelhart propés um algoritmo de treinamento, o backpropagation, que seria
possivel realizar o freino de redes multicamadas diretas, introduzindo o conceito
de camadas ocultas e redes neurais que ficaram conhecidas como perceptron
multicamadas (MLP — Multi Layer Perceptrons). Estes sdo os modelos de RNAs

que sao mais utilizados em aplicagbes praticas atualmente.
2.7.3 O Algoritmo

O processo de treinamento de uma RNA que é utilizada juntamente com o auxilio
do backpropagation e envolve basicamente duas fases: A propagacgao do erro e
a retro propagacéo do erro, que compara a saida obtida com a saida desejada

onde os pesos sao modificados enquanto forem apuradas diferencas.

As redes que utilizam o Backpropagation para o treinamento, geraimente
trabalham com a regra delta generalizada, que é baseada na regra delta
desenvolvida por Windrow e Hoff em 1960 para treinar o neurénio conhecido
como Adaline. A regra delta consiste em um método de gradiente descendente
para minimizar o erro quadrado total para a fungéo de ativacgao linear, porém se
a superficie de erro for complexa ndo ha garantias de solugdo étima, levando o
algoritmo a convergir para uma solugéo estavel (minimos locais) (BRAGA, et al.
2000). A regra delta generalizada se utiliza de uma fungao de ativagdo semi-
linear, no caso a sigmoide que é diferencial e ndo decrescente. E com essa
fungcdo que o neurdnio identifica o nivel de atividade de sua entrada e a partir
disso, é definida sua saida. E comum o algoritmo chegar a convergir para os
minimos locais, e para contornar esse problema algumas técnicas sao utilizadas,
como por exemplo, adotar a taxa de treinamento decrescente, adicionar nos
intermediérios e ruido aos dados. Essas solugdes fazem com que a rede acelere
o algoritmo Backpropagation reduzindo a incidéncia dos minimos locais.
(ARAUJO. et al., 2012).
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Todo processo de treinamento € baseado em fungéo do sinal obtido no resultado
do erro calculado, tendo em vista que este é responsavel pela atualizagao dos
pesos (SILVA, 2010). O sinal do erro na saida do neurdnio definida como k&
(considerando a k - ésima amostra de treinamento), o sinal do erro é obtido
através da diferenca entre a saida desejada e a saida de ativagao do neurénio &

(saida do neurdnio kna interagao n).

ex (M) = die(n) =y (W) (211)

O termo ex corresponde ao erro calculado na saida do neurdnio k, onde di(n) é
a saida definida como desejada e a resposta dada para o neurdnio k é yk(n).

yk(n) é definido por:

yie (n) = p(vk(n)) (212)

Onde a funcao de ativagdo ¢ que é associada ao neurdnio k é definida pela

sigmoide:

2 (213)

1+e? k(™)

Neste caso a dire¢édo da curva e sua tendéncia € determinada pelo fator ae a
orientagdo sigmoide € dada pela dire¢do do vetor peso w, ou seja, define a
posicao da fungéo sigmoide com ao eixo da ordenada (BRAGA, et al. 2000). O
sinal usado na fungao de ativagédo € dado por:

v (n) = Yito wi; (M) y; () (2.14)

O peso é dado por Wisda sinapse que é conectada a saida j e a entrada do
neurénio k. yj(n) corresponde a saida do neurdnio j, mrepresenta o numero total
de entradas excluindo o bias. Com a propagacdo do erro o treinamento é
iniciado, xi(n) representa os estimulos de entrada, nessa fase, os pesos das

sinapses sao iniciados com valores aleatorios e permanecem inalterados para
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serem propagados pelas camadas intermediarias até a camada de saida
(CARRARA, 1997).

yi(n) = ¢ (vj (n)), onde (2.15)
y; (n), € a saida do neurdnio j ou entéo,
yi (n) = ¢ (X2 wj (Mx;(n)) (2.16)

O desempenho local para ser medido exige a utilizagdo de uma fungéo custo,
que n este caso € o erro quadratico (SILVA, 2010), através dessa fungéo todos
os erros de cada neurdnio séo processados:

1

E() = 5 3, ez () (2.17)

E M) = 7 %jea(di(m) — yi (0))? (2.18)

A cada novo ciclo que se inicia a fungdo assume um novo valor em fungéo da
atualizagdo dos pesos, podendo se verificar como os erros vao decrescendo na

fase de treino.

2.7.4 Ajustes dos Pesos da Camada de Saida

Quando o treino entra na fase de retro propagagéo do erro, os bias e o peso
atribuido aos ajustes sdo baseados no gradiente e da fungéo do erro quadratico.
O calculo do gradiente entra em um processo de repeticao para cada neurdnio,
e faz com que os pesos do erro na superficie caminhem de maneira a diminuir

na direcdo contraria ao gradiente da fungao custo (CARRARA,1997).

O algoritmo backpropagation aplica uma correcdo “proporcional” a derivada

parcial do erro quadrético para realizar o ajuste dos pesos sinapticos da camada
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de saida. A relagao ‘;—Iiv@, estabelece a direcdo que se da a busca no espaco da
kj

sinapse wy;.

9Em) _ OF Oyk dvic (2.19)
awk]' ayj 6,,k 6wk

Diferenciando as equagdes obtém-se:

8
a—i/: = —erd'(Vi)y; (2.20)

Pela regra delta obtém se a sinapse corrigida, onde p € a taxa de aprendizagem:

JE
Aij(n) =- ua—: (2.21)
Wkj

Substituindo 2.18 em 2.19, onde §;, € o gradiente local:
Awyj(n) = perd'(vi)y; (2.22)
Awgj(n) = udyy; (2.23)
Apos a apuragéo da correcéo sinaptica o valor do peso atualizado € dado por:

ij(n + 1) = ij(n) + Aij(n) (224)

2.7.5 Ajustes dos Pesos - Camadas Escondidas

Nesse caso ndo existe uma resposta que é desejada para o erro, apenas uma

estimativa deste. O ajuste do peso w;;(n) em relacéo a retro propagagéo do erro

€ dada por:



BE(n) _ 8E 9y dy;
Owji  Byj By Okj

Na diferenciagdo das equagdes obtém-se:

9 _

) i
6vj

6vkj _ ’

. . . OE
O calculo da derivada parcial € dada por:
Vi

aE 3E 8
== = =2tk onde,
Oyj Ovk Oyj
a I(Wg;i Vi
Svk = Z ( kiYp =W j
Byj Oyj
R JE
O calculo do termo —:
avk
3E OE By ]
— = ——=== — (dp_yi)P'(vx)

i ayk Ok

Dessa forma o gradiente local pode ser definido como:

Sk = —(dy-y1)d'(vi)

Substituindo 2.27 € 2.29 em 2.26:

9E
— = —XxWg; Ok
Byj 4

Substituindo as equagdes 2.24, 2.25 e 2.28 em 2.23, obtemos:

30

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)
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2L Cwiy S)xd' (v)) (2.33)

aWji

O ajuste do peso wj;; deve ser feito de modo em diregéo contraria ao gradiente

afim de minimizar o erro:

Bwy(n) = - u7— 234)
Wi
Awj; (n) = — p(Xewe;j 6x)x; (2.35)
E ent&o o gradiente local é dado por:
8 = Zwwij 8k) &' (v)) (2.36)
A corregéo que é aplicada a sinapse:
Awj;(n) = udjx; (2.37)

Portanto, o valor atualizado do peso da primeira camada é dado por:

Os pesos atribuidos inicialmente a rede s&o inicializados com base em valores
aleatérios, e somente depois da propagacgao dos primeiros valores de entrada e
os desvios estejam calculados é que os pesos sio atualizados com os valores

relativos aos dados do problema que esta sendo apresentado.
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3. METODOLOGIA PARA ESTIMAGAO DOS RESULTADOS

O objetivo do estudo apresentado nessa monografia € medir a capacidade de
uma RNA realizar previséo dos valores e tendéncias de alta ou de baixa do indice
IBOVESPA com base no desempenho de variaveis macroeconémicas. Também
se deseja entender quais varidveis macroecondémicas possuem maior peso
sobre a estimacgéo dos resultados desse indice e se ha correlagéo entre essas

variaveis.

Foram realizadas em torno de 100 simulagbes de forma empirica, onde se
comprovou o informado pela literatura de que os melhores resultados foram
obtidos através de redes diretas utilizando o algoritmo backpropagation. A
implementagcéo computacional das RNAs foi realizada utilizando o software MBP

(multiple backpropagatipon).

Foram selecionados 8 modelos para analise, de modo a demonstrar a evolugéo

do estudo, cujos resultados constam no préximo capitulo.
3.1 O modelo de RNA utilizado

Os dados escolhidos como entradas para as RNAs sdo as séries mensais de
varaveis macroecondmicas, para o periodo de Janeiro de 1998 a Dezembro de
2006. A escolha desse intervalo de datas foi feita de modo que todas as variaveis

de interesse estavam disponiveis.

O conjunto total de variaveis de entrada das RNAs tem 1.440 amostras e essas
variaveis foram separadas na proporgcao geralmente proposta pela literatura, tal
que 90% desses dados foram separados para teste e 10% para validagdo de
maneira aleatéria. Optou-se pelo escalonamento de algumas varidveis de

entrada além do uso de variaveis percentuais.

As variaveis de entrada escolhidas foram a Taxa de Juros de Longo Prazo
(TJLP), Taxa Selic, Taxa de Cambio Efetiva Real - INPC e o indice Nacional de
Precos ao Consumidor Amplo (IPCA). Essas variaveis foram escolhidas tendo
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em vista o interesse que ha de entender como elas podem afetar a previsido do
indice IBOVESPA, e entender quais dessas variaveis possuem maior peso para
a formagao do preco deste indice, que sera adotado como variavel de saida

buscando entender se ha relacao entre todas essas variaveis.

Todos os dados foram uniformizados de maneira linear se limitando a um
maximo de 1, e um minimo de 0 e também de maneira sigmoide, afim de
estabelecer um limite maximo entre os nlmeros de 1 e um minimo de -1.
Conforme defendido por muitos autores, apdés os treinamentos, os dados
linearizados ente -1 e 1 se mostram mais eficazes no tocante ao desempenho
da rede. Para os modelos aqui propostos, usaremos esses dados que foram

uniformizados utilizando a expressao:

« __ 2x—[max(x)+min(x)]

(4.16)

max(x)—min(x)

No Grafico 1 constam os valores das variaveis de entrada e a variavel de saida

esperada ja normalizados.
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3.2 Topologia e Arquitetura

A arquitetura escolhida para o treinamento das redes neste trabalho foi uma rede
feedforward (direta), com o aprendizado supervisionado, pois apés todo o
apanhado tedrico feito para o desenvolvimento deste trabalho, entende-se que

esse se apresenta como o melhor modelo com finalidade de previséo.

Optou-se pelo uso de duas camadas ocultas, em fase de teste, se observou que
bons resultados eram obtidos através de apenas uma camada ou mais camadas
além de duas, mas esses eram ainda melhores quando utilizados duas camadas,
tendo em vista que a diferenga entre os erros das amostras de teste e treino se
apresentam menores, foi adotada a sugestao inicial do software MBP para o

numero de elementos em cada camada.

Foram utilizadas as fungdes de ativacdo tangente hiperbélica e sigmoidal, e
efetuada a comparagao entre essas em cada modelo. No proximo capitulo sdo

apresentados os desempenhos obtidos.

3.3 Algoritmo de Treinamento

O algoritmo utilizado foi o backpropagation (BP). A taxa de aprendizagem
utilizada foi de 0,7 e incluido uma taxa de momentum igual a 0,7 onde a
probabilidade de cruzamento adotada foi de 0,9 e a probabilidade de mutacgéo
de 0,01. Foram utilizadas 1.000 iteragbes em cada treinamento e como critério
de parada foi adotado o erro quadratico médio (MSE) menor que 0,01. Todos os
pesos inicias da RNA foram escolhidos aleatoriamente pelo software.

3.4 Medida de Performance

Para medida de performance foram usadas as seguintes variaveis:

e Erro absoluto minimo;

¢ Erro absoluto maximo;
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" o SN (di=x;)?
e MSE - Erro quadratico médio: MSE = %‘—— (417)
e MAE - Erro absoluto maximo: MAE = %Z?’:l [x; — d;] (418)
T (o ~%)(dj—d)
N

e r— Coeficiente de correlacéo linear: r = (4.19)

JZ(di—TiY \/):(x,-—a‘c)’
N N

Nas expressdes acima, d é o valor desejado, Né o nimero de amostras e xé a
saida rede. Os pesos também foram analisados afim de definir quais variaveis

foram mais importantes para a tomada de decisdo da RNA.
No software utilizado, as variaveis foram definidas conforme listado abaixo:

Entradas:

1% input - Taxa de Juros (Longo Prazo)
2" input - Taxa de Juros (Curto Prazo)
3" input = Taxa de Cambio

4t input - Inflagéo

5% input = IBOV



4. ESTIMACOES E RESULTADOS

Neste capitulo sdo apresentados os resultados da aplicagdo de 8 modelos
distintos de RNAs na previsdo do comportamento do indice IBOVESPA (IBOV).

Inicialmente foi decidido realizar a previsdo do valor atual do IBOV observando
0 desempenho das variaveis macroecondmicas envolvidas. Foram

desenvolvidos dois modelos distintos:

Modelo 1: O objetivo deste modelo foi a previséo do valor médio de fechamento
mensal do indice IBOV levando em consideragéo as variaveis macroecondémicas
no mesmo periodo. Foram levados em consideragéo dois conjuntos de dados
composto por todas as 1.140 amostras, sendo o primeiro composto 965
amostras, que correspondem ao periodo de Janeiro de 2006 a Janeiro de 2014,
que fardo parte do treinamento, enquanto as 175 amostras restantes que
correspondem aos periodos de Fevereiro de 2014 a Dezembro de 2016 para

serem usadas como teste (validagao).

RMS {Erro Quadrético Médic} after the addition of naise to the:
Training Data Testing Data

Noise {Barutho} Taxade JurosiP |¥axa de Juros CP| Taxa de Cambie inflagio  |Taxa dejuros|P | Taxade Juros (P | Taxa de Cambic |  Inflagio

0% 0.0473453734 00473453734 0.0873453734 | 0.0473453734 | (.1892767891 | 0.18527673%1 | (.1892767891 |0.1892767351
2% {.0487362460 0.0574807047 0.0479852863 | 0.0483365838 | 0.1852761558 | 0.1892767873 | 0.1892775715 |0.1892772581
5% 0.0553513652 0.0481842108 0.031228487C | 0.0532020874 | 0.1892727281 | ©.1892767766 | 0.1892815636 |0.1892796167
10% $.0695627518 00500058457 0.0590951365 | C.0641306807 | 0.1892627029 | 0.1892767388 | (.1892913109 |0.1892852541
alwayssettominimum | 01310291028 | 0.0735276056 | 0.1570333650 | 0.0730305387 | 0.1978346497 | 0.1500313395 | G.1832928707 §0.1865680112
always sat to mean {0.1115662152 0.0585036643 01249825051 | 0.1178797090 | 0.1936882562 | ©.18957707407 | G.1855084868 |0.1910366351
always set to maximum | 0.1586404180 0.0962565709 0.2688225164 | 0.2414929744 | 0.1886174045 | 0.1890999387 | C.1908759626 |0.189653497%

Tabela 1 — Modelo 1

from the input layer
to the 1th hidden
€ iaveri & bias 1th neuron 2th neuron 3th neuron 4th neuron
1th neuron 0.659648 -447.966 -142.375 312.024 -39.801
2th neuron -173.984 377.835 116.974 0.809849 3.18
from the 1th hidden layer
to the cutput layer bias 1th neuron 2th neuron
1th neuron 377.669 -387.645 -590.638

Tabela 2 — Modelo 1
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Modelo 2: Este modelo tem o mesmo objetivo e estrutura do modelo 1, porém

nao foi utilizado todo o conjunto de dados. Foram levados em consideragao dois

conjuntos de dados compostos por todas as 535 amostras, sendo o primeiro

composto 425 amostras que correspondem ao periodo de Janeiro de 2008 a

Janeiro de 2015, que fardo parte do treinamento e enquanto as 110 amostras

restantes que correspondem aos periodos de Fevereiro de 2015 a Dezembro de

2016 para serem usadas como teste.

Tabela 4 — Modelo 2

RMS {Erro Quadrdtico Médio} after the addition of noise to the:
Training Data Testing Data
Neise (Barulho) Taxa de Juros LP | Taxa de Juros CP | Yaxa de Cimbio Inflagio  (TaxadeJuros LP | Taxa de Juros CP|Taxa de Cambio]  Inflagdo
0% 0.0250150826 | 0.0250150826 0.0250190826 | 0.0250130826 | 0.0415600551 | 0.0415600351 | 0.0415600551 |0.0415600551
2% 00251406263 | 0.0259176084 0.0273316158 | 0.0255980446 | 0.0415590676 | 0.0415611983 | 0.0415460631 |0.0415634275
5% 0.0257685620 | 0.03018656454 0.0369573177 | 0.0284382906 | 0.0415535037 | 0.0415676400 | 00414816668 |0.0415810881
10% 0.0273665397 | 0.0392854775 0.0533300280 | 0.0348664055 | 0.0415403088 | 0.04158385641 | 0.0414121085 |0.0416278285
alwayssettominimum | 0.0299425180 | 0.0913977386 | 0.1164376316 | 0.2178205513 | 0.0416723771 | 0.0415794329 | 0.046930287¢4 |6.2793326835
always setto mean 00488584555 | 0.1130868746 00853066019 | 01109155753 | (.0410515816 | 0.0427612218 | 00415541277 |0.0905557450
always setto maximum | 0.0752669842 | 01759631173 | C.O717816510 | 0.1957954228 | 0.0391837905 | 0.0474686522 | 0.0422925208 |0.0423800173
Tabela 3 — Modelo 2
from the input layer
to the 1th hidden layer bias 1th neuron 2th neuron 3th neuron 4th neuron
1th neuron -139.781 3.193096 0.467063 -0,394404 -1,84256
2th neuron -502.988 204.874 -345.846 -8,27752000 -4,16367
from the ith hidden layer
to the output layer bias 1th neuron 2th neuron
1th neuron 103.531 -990.514 290.493

Como variaveis de entrada foram consideradas as variaveis macroecondmicas

e como variavel de saida, a cotagdo do IBOV no mesmo periodo. Nos dois

modelos apresentados foi utilizada a fungao sigmoidal.
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E possivel observar através dos dados e graficos que o valor do IBOV (Desired
Output) apresenta elevada taxa de crescimento no inicio do periodo coletado.
Como o conjunto de treinamento do primeiro modelo é formado pelos primeiros
periodos, a RNA s6 consegue apresentar bons resultados quando o valor da

saida desejada é proximo aos valores de treinamento.

No modelo 2 foram desconsiderados os Ultimos periodos visando corrigir essa
oportunidade. O problema foi reduzido e este apresentou menores erros em
relagédo ao modelo anterior (os valores dos erros quadraticos se apresentam
menores nesse modelo), porém a rede ainda apresentou uma defasagem em

relacéo ao valor real.

Em ambos os modelos todas as varidveis macroecondmicas sdo consideradas
importantes, com destaque em comum para a taxa de cambio e inflacdo. E
possivel observar essa importancia a medida que s&o adicionados ruidos (noise)
arede, sendo que as variagdes entre os valores de erro encontrados sdo maiores
que as observadas nas demais varidveis. No modelo 1 a Taxa de Juros (Longo
Prazo) se mostrou mais significante que no modelo 2, tendo maior peso a Taxa

de Juros (Curto Prazo).

Em seguida, foram desenvolvidas RNAs com objetivos voltados a uma aplicagéo
mais pratica: a previsdo do IBOV no préximo dia, tendo em vista que o interesse

dos investidores tipicamente é prever valores futuros de pregos de agdes.

Também é possivel identificar que as redes conseguiram modelar boa parte dos
movimentos de subida e descida das variaveis e ambos os modelos
apresentaram um bom indice de correlagéo linear com destaque para o primeiro

modelo.

Modelo 3: O objetivo deste modelo foi medir a capacidade de previsdo do valor
do IBOV no periodo (f+7), onde foram utilizados escalonamentos nas variaveis
de entrada e a inclusdo do IBOV escalonado também como uma variavel de

entrada, para fornecer uma memoéria de curto prazo da rede (Gltimos trés
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periodos). O conjunto de dados foi formado por todas as 1.140 amostras, sendo

965 parte do treinamento e as 175 restantes correspondentes as amostras de

teste.
RMS {Erro Quadréatico Médio] after the addition of noise to the:
Training Data Tashing Dafa
Noise (Barulha) Taxa de Juros LP| Taxa de Juros CP | Taxa de Cambic | InflagBo | IBOV  [Taxade Juros LP| Taxa de Juros CP | Taxa de Cambic | Inflagio 1BOV
0% 0.0356709424 | 0.035670%424 6.0356709424 |0.0356709| 0.0336709 | 0,1029569881 | 0,1029569881 0.1029565881 | 0,10293698 | 0.10235698
2% 0.0359307174 | 0.0356854598 | 0.0358004452 |0.0367510|0.0364194 | 01029580975 | 0.1029577950 | 0.1028763728 |0.10301837]0.10299272
5% 0.0372671670 | 0.0357615822 [0.0364725041  [0.0419696 | 6.0401189 | 0.1029635206 | 0.1029620563 | ©0.1030785160 |0.10334415 |0.10318161
10% 0.0406319379 | 0.0359638077 00382035176 |0.0533331| 0.0486160 | 0.1629794403 | 0.1029734145 0,1033335292 |{0.106424033 | 0.10369540
always set to minimum | 01818529238 | 00450255649 | 00552000867 |0.1255587|0.2465716 | 0.1106228164 | 01001870325 | 60985219927 |0.14318824 |0.09971175
always set to mean 0.0803751760 | 0.0384811827 | 0.0548357006 |0.1158652(6.1296393| 0.1069007541 | 0.1011561256 | 0.0983915794 |0.20496677 | 0.11300140
ahwayssetto maximum| 00403226951 | 0.0516072528 | 0.0927234643 |0.1322009|G.1790584 | 0.1036328460 | 01027569002 | 0.0987821213 |0.30693280 |0.19182204
Tabela 5 — Modelo 3
from the input layer
to the ith hidden .
e bias ith neuron 2th newron | 3th neuron | 4th neuron | 5th neuron
1th neuron -233.124 -283.781 ¢.811064 105.591 -704.709 -163.218
2th neuron -125.658 ~-0.440865 0.371951 3181.293 -323.356 245.708
from the 1th hidden layer
to the output layer I bias 1th neuron I 2th neuron
1th neuron -0.13213%9 -438.099 405,286
Tabela 6 — Modelo 3
Modelo 4: Apresenta o mesmo objetivo do modelo 3, porém com a redugéo do
conjunto de dados para 950 sendo, 902 utilizados para treino e 48 para teste.
BMS {Erro Quadratico Médio] after the addition of noise to the:
Training Data Testing Data
Noise {Barulho) Taxade Juros LP | TaxadeJurosCP [Taxade Cimbic| Inflagdo | IBOV  |Yaxa de Juros LP| Taxa de Juros CP |Taxa de Cimbio| Inflacio IBOY
0% 0.0323677540 0.0323677540 | 0.0323677540 [0.03236775[0.0323677{ 0.1123514512 | 01123514512 | 0.1123514512 |0,1123514 |0.1123514512
2% 0.0330552190 0.0323795781 | 0.0326361748 [0.03563165(0.0331590] 0.1123514790 | 0.1123524805 | 01123890832 |0.1124360 |0.1123878452
5% 0.0364252099 | 0.0324415508 | 0.0340105128 [0.04883066(0.0370265) 0.1123516252 | 0.1123578858 | 0.1125887880 | 0.1128908 |0.1125809116
10% 0.0440018779 | 0.0326061780 | 0.0374258170 [0.07084264[0.0457062| 01123520154 | 01123723131 | 01131386683 | 01141888 0.1131119718
alwayssetto 0.2350860328 0.0401336582 | 0.0574172444 |0.18630275/0.2403767(0.1114131273 01098424932 [0.1088047585 [ 0.1620688 |0.1107606184
always set to mean 0.1084868670 | 0.0342572143 | 0.0666064455 |0,12961982/0,1218660| 01117861293 [0.1106387512  |0,1086687445 | 0.0487917 |0.1399569264
always set to maximum | 0.0407745888 0.0415616153 | 01129212955 [0.12522092]0.1701367] 0.1120903317 | 01121376834 | 01073374344 |0.1250959 |0,2237795579

Tabela 7 — Modelo 4
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from the input layer
to the 1th hidden layer bias 1th neuron 2th nesuron Sthneuron | 4thneuron |5th neuron
ith neuron -325.663 -369.478 0.433138 0.76175 -873.491 -246.952
2th neuron 107.577 -0.078075 -0.477333 -288.362 432,003 -283.554
from the 1th hidden layer
1o the output layer I bias 1th neuron I 2th neuron
1th neuron 332,502 -486.846 -34.366

Tabela 8 — Modelo 4

Modelo 5: Similar ao modelo anterior, com o uso do mesmo conjunto de
treinamento do modelo 3. Entretanto, eliminando o IBOV escalonado como

variavel de entrada.

RMS {Erro Quadrétice Médio} after the addition of noise to the:
Training Data Testing Data
Noise (Barulho} | Taxa de Juros LP| Taxa de Juros CP| Taxade Cambio | Inflagio [Taxade Juros LP| Taxa de juros CP | Taxa de Cimbio Inflagao
0% 0.0450708671 | 0.0430708671 | 0.0490708671 D.043070867] 0.1063030147 | 0.1063030147 | 0.1063030147 | 0.1063030147
2% 00432153887 | 0.0503980655 | 0.0492324321 D.049376918( 0.1063286517 | 0.1064801618 | 0.1063566781 | 0.1063698530
5% 0.6499670467 | 0.0567644380 | 0.0506990357 [.0509707614 0.1064636613 | 0.1074296764 | 0.1066402306 | 0.1067235752
0% 0.0519146757 | 0.0702422205 | 0.0542758057 [.0550930214 0.1068270819 | 0.1101154687 | 0.1074111607 | 0.1076897128
alwayssettomi) 0.0385939066 | €.1230015313 | 0.1055165772 [.1263588081 0.0984215164 | 0.0983241000 | 0.2314911824 | 0.2334352138
alwayssettome 0.0776728827 | 6.1129903502 | 0.0845589298 D.085799045( 0.0984359124 | 0.0983899995 | 01287316092 | 0.2295897931
alwayssettomdq 0.0580754467 | 0.2713173328 | 0.1260745818 D.1313066029 0.0985491663 | 0.1028912008 | (.0996120122 | 0.1573729580
Tabela 9 — Modelo 5
from the input layer
to the 1ih hidden layer I bias ith neuron | 2th neuron 3th neuron |4th neuron
1th neuron -888.536 191.494 502.473 -277.848 -305.774
2th neuron 290.558 -0.500238 0.462297 306.464 250.531
from the 1th hidden layer

to the output layer I bias 1th neuron I 2th neuron

1th neuron 292.884 -928.705 -304.812

Tabela 10 — Modelo 5
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Gréfico 11 — Modelo 5 (Teste)

E possivel observar que a introdugéo do IBOV escalonado ajudou na majoragao
dos valores da rede, porém este obteve um peso bastante consideravel
juntamente com a inflagdo principalmente no modelo 3. Percebeu-se que
melhores resultados eram obtidos sem esta variavel (comparando o modelo 3 ao
modelo 5, onde foram utilizados os mesmos dados onde é possivel observar que
os valores dos erros se apresentam maiores no modelo 3), a inclusio do IBOV
escalonado melhora a percepgao de alta e baixa do IBOV, porém os erros se
mostram menores com a retirada dessa variavel, isto podendo ser observado

nos valores de erro maximo € minimo apresentados.

Modelo 6: O objetivo deste modelo foi prever se o indice IBOV ira cair ou subir
do periodo (t+7), utilizando como valor desejado o teste légico 0 = caire 1 =
subir. Foram utilizados os mesmos conjuntos de treinamento e teste do modelo
3.

RIS {Erre Quadrétice Madio) after the addition of noise to the;

Training Data Testing Data
@ise(sawlho) Taxade Juros [P TaxadelumsCPITaxade(émbiof Inflagdo 1BOV TaxadelurosLP|TaxadeJurosCP Taxade Cimbio | Inflagio ! 1OV
0% D.OODIASE (00004244982 |0.0004244582 [0.0004264982 (00004264982 (0000712220 [00007mIzZn  00007si2z0  |n.coors1zzafo oozt
% 00004245370 [0.0004245389 00004245041 [0.0004245551 [0.0004246655 00007812253 [0.0007812003  [D.0007RI056 |0.000781196]0.0007812285
5% 00004247411 (00004247524 ‘0.0004247352 ‘u.wo:smsaslo.mzsmz ‘0.000781268} 0.0007811022 lﬁ.oomamgs o.eomsmsx{&cwsxzsn
10% 00004252857 00004253210 ]o.mmm Io.oommss Io.momsm lc.oce7313715 0.000780837%4  |D.0CO7ROS913 [0.0007BOTOO{D.0007813559
lways settominimum (0000MSR2624 (00003709631 [D.0003555086 _[0.0003603443 00002943390 [0.0008500457 00006221353 (00006166011 |G.00052377140.0007120758
alwayssettomean  |0.0004266075 |0.0004235661 |0.0004416114 [0.00043520020.0004049301 [0.0008000515 [0.007ITSIAT  [D.OBTOTIT  0.00065E3840.0007855714
hyays setto masimum 00004005765 _[0.0005I47696 _[0.000626978 0005589280 (00006447324 _[0.0007817845 _ |DOOCTR08926  [0.0007ISIATS  |0000756315{0.0008627568

Tabela 11 — Modelo 6

from the input layer

to the 1th hidden Iayerl bias

1th neuron |2th neuron|3th neuron |4th neuron [Sth neuron

1th neuron 0.431427 -0.244052 -0.729624 -0.673287 -0.836951 -0.626326
2th neuron 191.295 0.652927 0.374651 0.0923666 0.313591 -0.66252
from the 1th hidden

to the output layer I bias |1th neuronl 2th neuron

1th neuron 443.036 158.214 196.235

2th neuron 380.772 180.756 257.417
Tabela 12 — Modelo 6
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Modelo 7: Possui a mesma proposta do modelo anterior, apenas com a

mudanca da fungéo de ativag&o para linearsig.

RMS (Erre Quadrétice Médio) after the addition of noise to the:

Training Data Testing Data
lﬂse(ﬂaru!ho] Taxa de Juros 1P| Taxa de Juros CP | Taxa de Cimbio | Inflagio 18OV Yaxa de Juros 1P | Taxa de Juros CP | Taxade Cimbie | Inflagic IBOV
0% 0000474526 | 0.0004745266 | 0.0004749260 D.00047492600.0004749260) 0.0011347518 | 0G.0011347518 | 0.0011347518 |0.0011347518(0.0011347518
% 0.0004749334 | 0.0004743634 | 00004749316 [.00047433850.0004743404) 00011348423 | 0.0011382025 | 0.0011352285 |6.00113564640,0011359898
5% 0.0004749597 | 0.0004751603 | G.0004743611 D.00047500170.0004750166) 00011353173 | 00011563937 | 0.0011377321 |0.6011403471|0.0011425009
10% 0.0004750356 | 0.0004756852 | 0.0004750393 D.00047517980.0004752198| 0.0011365831 | 0.0012055375 | 0.0011434194 |0.0011529188)0.0011599595
ahways set tominimum | G.0005357887 | 0.0004569893 | 0.0004611493 [.00049072690.0004904207) 0.0009435209 | 00004625208 | 0.0006363257 |0.0002303003|0.0007331217)
always set to mean 0.0004726197 | (.0004723008 | 0.0004753950 D.00047529430.0004771821) 6.0010151338 | 0.0005510835 | G.0008211767 |(.0006033043|0.0011850421
always setto maimum | 0.0004260525 | ©.0005312605 | 0.0004574074 D.0D052634890.0004842366] 0.0010135452 | 0.0009998183 | O0.0012242282 |5.0008522508 |0.0030464552
Tabela 13 — Modelo 7
from the input layer
to the 1th hidden layer l bias 1th neuron IZth neuron Iath neuron |4th neumnlﬁth neuron
1th neuron 0.0464361 107.357 0.0177283 -0.212954 -0.545925 (0.765742
2th neuron 256.843 -0.0972837  -0.631838 -0.231137 -0.309326 -0.38766
from the 1th hidden layer
to the output layer bias 1th neuron |2th neuron
1th newuron 332.787 0.189959 365.127
2th neuron 323.85% 0.184927 374.225
Tabela 14 — Modelo 7
Modelo 8: Muda o teste l6gico e a fungéo de ativagio em relacdao ao modelo 6.
O teste logico passa a ser -1 = cair, 1 = subir. Foram utilizadas funcdes de
transferéncia sigmoéide e lineartanh.
Sigmoide
RMS {Erro Quadrdtico Médio} after the addition of noise to the:
Training Data Testing Data
|£40ise {Barutho) Taxade uros1P | Taxade luros P | TaxadeCimbio | Inflagio 1BOV  17axade Juros LP | Taxa de Juros CP |Taxa de Cimbio| Inflagio BOV
0% 00004663673 | 0.0004663673 | 0.0004663673 |0.0004663673[.000466367] 0.0005678888 | 0.0003678888 | 0.0003678888 |0.0005678888/0.0005678888
2% C.0004663346 | 06.0004664637 | 0.0004663743 |0.00046638430.000466379{ 0.0005679102 | 0.8005680075 | 0.0005578372 |0.0005679117|0.0005673051
5% 00004664757 | 0.0004663639 | G.0004664147 |0.00046647380.000466442 0.0005680224 | 0.0005686301 | 0.0005679412 |0.6005680318/0.0005679905
10% 00004657184 | 0.0004583153 | 0.0004665208 [0.0004667123[.0004666127 0.0005683214 | ©.00057028%4 | C.0005680585 |0.0005683520]0.0005632183
alwayssettominimum | 0.0005334751 | 0.0003472087 | 00004838154 [0.000419305LD.00CSIZ6120 0.0009004889 | 0.0003228825 | 0.0006568142 [0.00044325780.0006230564
always set tomean 00004683360 | 0.0004636473 | 0.0004580609 |0.0004665303[.000467771] G.O007720060 | 0.0004154171 | 0.0006104801 |0.0004857966|0.0005625273
plwayssettomaximum | 0.0004117289 | 0.000659145 | 0.0004557037 [0.0005285379].0004351487 00006640707 | 0.0005638130 | 0.0005739513 |0.0005425364|0.0005177747
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Tabela 15 — Modelo 8

from the input layer

to the 1th hidden IayerI bias |1th neuronl 2th neuronl3th neuron|4th neuronISth neuron
1th neuron 126.227 0.237203  -0.557036 0.31491 -0.309325 0.31724
2th neuron -0.2122180.191707  -0.457702 -0.314847 -0.0091773 -0.144672

from the 1th hidden

to the output layer I bias |1th neuronl 2th neuron
1th neuron 495.311 190.464 119.468
2th neuron 482.862 225.578 0.884807

Tabela 16 — Modelo 8

Lineartanh
RMS {Erro Quadratico Média) after the addition of noise to the:
Training Data Testing Data

Noise (Barulho] | Taxade Juros LP | Taxade Juros CP l Yaxade Cimbio | Inflagio | 8OV Taxade JurosLP ] Taxa de Juros £P I Taxade Cimbio| Inflacie 180V

0% 0.0003891479 (00003831475 [0.0003891479  |0.000383147(0.0003651479 _ [0.0003527845 _ [0.0003527845  |0.0003527845  |0.0003527845 0.0003527845
% losoossorsss  Joooussiess  [0.0003631672 |0.000289163(0.0003891745  [0.0003527885  |0i0003527866 0.0003527536 _|0.0003527850 |0.0003528008
5% [voo03Bs1oi?  |0.0003830669  |0.0003892687  0.0003692460.0003693145  [0.0003526095 _ [0.0003527975  |0.0003528415 _ 0.0003527541 00003528867
10% oocozsszssr  [0.0003895340 (00003835395 |0,0003694660.00036968%0 _[0.0003528655 _|0.0003526266 |0.0003579653 |o.0003528157 [0.0003331165
always set to mini{0.0004138950 _|0.0004288461 _ |0.0003917727 _|0.000425683/0.0004502216_|0.0004087245 _|0.0003740325 |0.0003386443 [0.0003735429 |0.0003760581
always set o mean [0.0003899830 _[0.0003865967 (00003648620 |0.000387538{0.0003919184_|0.0003795285__ |0.0003613865__|0.0003408537 To.0003623547 .0003482968
always set tomaxin|0.0003738119  [0.0003646852 |0.0004007388__|0.000367061]0.0003652252_|0.0003613735 _|0.0003525174 |o.000saz3723 [o.0003546343 0.0003358489

Tabela 17 — Modelo 8

from the input layer

to the 1th hidden Iayerl bias 1th neuron l 2th neuron I 3th neuron | 4th neuron I 5th neuron
1th neuron 199.883 0.206253 0.114196 -0.308547 0.0934586 0.418166
2th neuron 204.591 0.0852473 0.361554 0.287205 0.332899 0.138023

from the 1th hidden layer
to the output layer | bias 1th neuron I 2th neuron
1th neuron 299.288 22.956 203.688
2th neuron 27.446 261.543 197.552

Tabela 18 — Modelo 8

E possivel se observar elevada correlagéo entre as varidveis e os erros que se
apresentam pequenos, sendo que o desempenho da rede aumenta

consideravelmente utilizando a fungdo lineartnh e o uso de -1 para indicar
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possiveis movimentos de queda, nota-se pequenas diferencas entre os erros
apresentados para as variaveis. Para tentativa de previsdes, onde ndo ha
informacéo futura, o desempenho da rede deve ser medido através da correlagao
entre as variaveis, provando ser possivel com a combinacdo dessas chegar a

um consenso de volatilidade futura aceitavel.
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5. CONCLUSOES

Apos observar os modelos estudados, é possivel concluir gue as redes neurais
artificiais (RNAs) sao ferramentas que podem ser consideradas para uso de

investidores na tomada de decis&o de compra e venda de acoes.

As RNAs estudadas nessa monografia nao apresentaram resultados
satisfatorios ao se tentar prever as cotacées reais de precos, pois as RNAs
apresentaram oportunidades de majoragdo de valores que nao foram
apresentados em seu treinamento. Porém nos casos de previsdo de tendéncias
de dia futuro, ao se utilizar de testes l6gicos (-1 = baixae + 1 = alta) os resuitados
se mostraram excelentes. Ao considerar a topologia de 2 camadas ocultas,
juntamente com a fungéao de ativagéo hiperbélica linear foram obtidos niveis de
acerto de 90% com uma confianca de 95%.

Observou-se que duas camadas na arquitetura das redes foram suficientes em
todos os modelos estudados nessa monografia. O aumento do nimero de
camadas para além desse valor ndo melhorou consideravelmente o
desempenho da rede, sendo que o tempo para processamento do treinamento
se tornou maior.

Os dados histéricos do IBOV se mostraram de fundamental importancia para as
redes na previséo de tendéncias. Outro ponto interessante é que com a adigao
das variaveis escalonadas, que representam de alguma forma diferengas entre
periodos passados da entrada a ser prevista, ajudou muito no desempenho das
RNAs.
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